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Abstract

Improvised Explosive Devices continue to be a main weapon used by terrorists. The

Joint IED Defeat Organization defined three main strategies to fight IEDs: attack the

network, defeat the device and equip military forces. This thesis provides models that can

give coalition forces a different perspective on how to fight IEDs.

We begin by first developing a model of the supply chain terrorists use to develop,

emplace and detonate IEDs. Our model contains four states in which IEDs can exist in:

construction (C), emplaced (E), detonated (D) and found by coalition forces (F). We also

have five rate parameters representing the flow rates of IEDs from one state to another.

Over a given period of time, coalition forces can collect data on the number of IEDs

detonated and found. From here, we apply a least squares method to obtain the parameter

set for our supply chain model that best fits the collected data. Minimizing our least

squares equation allows us to estimate where IEDs are located and how fast they are being

moved through the entire supply chain. Using this, we can judge the impact of past efforts.

Currently, the only metric coalition forces have for judging counter-IED efforts are the

number of IEDs detonated and found. By solving our least squares problem, we can

estimate the number of IEDs constructed and emplaced. This offers a more concrete

metric for determining how well coalition forces are attacking the network and defeating

the device and also offers insight on how to continue fighting IEDs.

Our research focuses on two cases for the behavior of the IED supply chain. In the

first case, we assume flow rates are constant. In the second case, we develop a more

complicated model in which the rates that IEDs flow from one state to another vary. This

model attempts to mimic basic strategies in which the rates are affected by actions from

each side. We apply a least squares method on the new parameters to fit our data and to

estimate the behavior of the IED supply chain.
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MODELING CONTINUOUS IED SUPPLY CHAINS

I. Introduction

1.1 Background

Improvised Explosive Devices (IEDs) continue to be a main weapon used by

terrorists against coalition forces overseas. In fact, IEDs have killed more American

soldiers in Afghanistan than anything else since the war began in 2001 [28]. The fact that

improvised bombs are effective, unpredictable and cheap to develop makes them the

weapon of choice. In the battle against IEDs, coalition forces face a more unpredictable

problem. As a result, IEDs pose a major threat to the safety of our deployed troops.

Furthermore, IED development is becoming more and more sophisticated. Enemy forces

are constantly refining their methods for producing and placing IEDs, using different

materials and changing their tactics as the U.S. develops and indoctrinates countermeasure

strategies. What results is a cat and mouse battle over the overall affect of IEDs.

This section discuss the measures that U.S. forces have developed in order to counter

the production and use of IEDs. We introduce the strategies that policy makers have

identified as the best courses of action to mitigate or eliminate the threat of IEDs. We also

discuss different units and organizations that have been created for the fight against IEDs

as well as how effective they have been in countering IEDs. Lastly, we develop intuition

on how this thesis will help in the fight against IEDs.

1.2 Current Efforts and Policies

To address the pressing threat that IEDs pose, the White House published a report in

February of 2013 titled Countering Improvised Explosive Devices [4]. The report
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acknowledged that the terrorists and criminals responsible for these attacks are resilient,

technologically adept and adaptable. They employ the most recent and successful tactics,

techniques and procedures (TTPs) gained from experience in Iraq, Afghanistan and

around the world. The use of IEDs worldwide has increased in recent years, with the

number of attacks exceeding 4,000 in 2011 [4]. Specifically, this report dives into the

policy which the White House believes is the most effective in countering IEDs, noting

that the U.S. must not become complacent to ensure national security. By building upon

existing policy and strategy, the White House looks to implement measures to counter

IEDs by (1) leveraging, integrating and aligning U.S. government efforts, (2) enhancing

focus on protecting American lives and (3) promoting cooperation with governmental,

international and private sector partners. Furthermore, the report goes on to highlight eight

different courses of action which will help put this policy into effect. These courses of

action include increasing engagement, exploiting information and materials from attacks,

advancing intelligence and information analysis, maintaining deployable

Counter-IED (C-IED) resources, screening, detecting and protecting people and resources,

safeguarding explosives and precursor materials, coordinating and standardizing

equipment and training and enhancing operational planning [4]. The policies of this

report underscore the fact that the fight against IEDs continues to be a cat and mouse

game and continues to urge the need for U.S. forces to develop and evolve strategies to

counter IEDs.

1.2.1 JIEDDO.

In 2006, the Deputy Secretary of Defense ordered the creation of the Joint IED

Defeat Organization (JIEDDO). The main purpose of this organization is to lead, advocate

and coordinate all of the efforts in defeating IEDs for the Department of Defense (DoD)

[29]. Specifically, JIEDDO aims to identify, fund and assess initiatives that provide IED

countermeasure solutions. The organization is primarily supported by the U.S. Army.
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Throughout the research led by JIEDDO, the DoD has come to solidify their primary

strategy for battling IEDs. The three areas of focus are: (1) attack the network, (2) defeat

the device itself once emplaced and (3) equip military forces with C-IED techniques [29].

1.2.1.1 Attack the Network.

The first area of focus on defeating IEDs, attack the network, is aimed at performing

offensive operations against the complex network of infrastructure that supports the

production IEDs [14]. Specifically, this focal point was envisioned to improve our forces’

success when attempting to disrupt the enemy’s ability to fund, develop and emplace

IEDs. The main efforts in attacking the network include: C-IED intelligence, weapons

technical intelligence, persistent surveillance, reconnaissance, informations operations,

counter-bomber targeting, IED technical and forensic exploitation and disposal of

unexploded and captured ordnance [14].

It is important to recognize that enemy forces uses extensive local and international

supply chains in order to meet the constant need to create IEDs. Furthermore, these

organizations may use informal money transfers and other localized means to acquire the

materials needed to produce IEDs. Some enemies produce IEDs in the form of homemade

explosives using widely available chemicals while others operate through providers with a

more traditional, operating supply chain. This creates the need for intelligence to trace and

highlight the many links of enemy IED supply chains so that coalition forces can quickly

and effectively interdict suppliers [3].

Since 2007, JIEDDO has delivered over 14,000 intelligence products, trained over

25,000 personnel and deployed over 1,000 personnel in order to support efforts in

attacking the network. JIEDDO further breaks down the first area of focus into three

tactical areas: (1) gain valuable intelligence, (2) build relationships and (3) neutralize the

enemy [14].
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To support the efforts in attacking the network, the C-IED Operations Integration

Center (COIC) was established in 2007. COIC’s network includes over 30 intelligence

agencies and other federal agencies that support the effort. COIC provides ease of access

to many databases, giving U.S. forces a vast supply of data and information needed to

attack the network. Since 2007, COIC’s pattern analysis team increased future accident

prediction by 85 percent. COIC also led to the discovery and capture of 497,000 pounds

of explosive material, which equates to over 12,000 IEDs [14]. In 2008, a forensic

exploitation team was deployed to Baghdad to provide enhanced weapons intelligence,

forensic exploitation and information fusion capability. Consequently, it helped end

improvised rocket-assisted mortar attacks [29]. In building strong relationships and

supporting critical organizations, the U.S. and coalition forces can continue to illuminate

IED supply chains and reveal the nature of IED networks.

1.2.1.2 Defeat the Device.

The second area of focus includes initiatives that help detect and disarm IEDs that

have already been emplaced in order to reduce the deadly effects of IED detonations. This

area of focus has led to the implementation of systems that can identify suspicious solids

and liquids as well as vehicle mounted IED detection systems and IED detection robots.

Several programs were developed as a result of the need to defeat IEDs. One such

program includes IED detection kits that can find both metallic and non metallic devices.

Further examples of defeating IEDs include Task Force ODIN (Observe, Detect, Identify

and Neutralize) which was deployed in 2006. The unit used aviation methods in order to

maintain persistent surveillance over areas of high IED risk. This was accomplished using

unmanned aerial vehicles [15].

1.2.1.3 Equip Military Forces.

The last area of focus entails equipping military forces with proper C-IED

techniques. This includes pre-deployment C-IED training which emphasizes the

4



understanding of current enemy IED capabilities and TTPs. To accomplish this, the Joint

Center of Excellence in Ft. Irwin, Ca began running training programs which emphasized

more realistic simulations. Other training enhancements include the use of small village

complexes, identifying and reporting homemade explosives, improved simulation training,

home station training and the development of C-IED mobile assistance training teams.

Many organizations are in support of this third area of focus. The U.S Marine Corps

Training and Education Command, U.S. Joint Forces Command, U.S. Army Forces

Command and the combat training centers have all contributed to increasing training

standards and raising IED awareness [16].

1.2.1.4 JIEDDO 2012-2016 Strategy Plan.

JIEDDO also released its 2012-2016 strategy in 2012 [13]. Even with dwindling

operations overseas, JIEDDO foresees continuously evolving bomb threats. In fact,

JIEDDO predicts that IEDs will continue to be used by members of the threat continuum.

This threat continuum contains actors such as smugglers, criminals, pirates, drug

traffickers and terrorists. Moreover, JIEDDO has pointed out the spread of IED use to

places such as Thailand and Norway. U.S. reports have also concluded that from January

to November of 2011, a total of 6,832 bombing incidents across 111 nations killed 12,286

people. With this, comes a warning from JIEDDO that IEDs will continue to make their

way onto U.S. soil [13].

The execution of U.S. policies regarding C-IED measures has led to successes

overseas. Reports confirm that in 2012, there was a 46 percent decline in deaths and a 50

percent decline in wounds resulting from IEDs in Afghanistan. The decline was linked to

an increase in surveillance equipment, metal detectors and intensive training. Each of

these supported one of the three areas of focus outlined by JIEDDO. Although the effect

of IEDs on U.S. troops was heavily mitigated, Afghan troops suffered a 124 percent
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increase in the number of IED attacks against them. To address this pressing issue, U.S.

advisers have helped train two dozen Afghan units in C-IED measures [5] [28].

1.2.2 Research Objectives.

In the fight against IEDs, JIEDDO has laid out three main focal points for the U.S. to

aim their efforts: attack the network, defeat the IED and equip military personnel. Our

research intends to give U.S. forces a better perspective on fighting IEDs. We begin by

first developing a model of the supply chain enemy forces use to develop, emplace and

detonate IEDs. From here, using the research methods discussed in the methodology

section, we apply a least squares method to estimate where the IEDs are located as well as

how fast they are being moved throughout the supply chain. Using this, we can judge the

impact of our past efforts. Solving a least squares problems provides an estimate for the

number of IEDs constructed and emplaced, information we did not have access to, to start

with. Without this information, coalition forces would have to use the number of IEDs

detonated and found to measure how well they are they are attacking the

network(interdicting IEDs before being emplaced) and defeating the device(interdicting

emplaced IEDs). Using our estimate for IEDs constructed and emplaced, we can judge the

effectiveness of our efforts in attacking the network and defeating the device directly. This

estimate can also provide insight on how to continue to fight IEDs in the future.
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II. Literature Review

2.1 Introduction

On top of the research JIEDDO has performed to fight IEDs, there have been

numerous academic research papers published for the same purpose. In this section, we

mention some of the previous work aimed at countering IEDs and how they have

contributed to the battle against IEDs. Furthermore, we also take a look at supply chain

model examples and how they can be used to develop our model for the IED supply chain

process.

2.2 Previous C-IED Research

2.2.1 Modeling Insurgency, Counter-Insurgency and Coalition Strategies and

Operations .

In 2012, David and Kristin Arney published Modeling Insurgency,

Counter-insurgency, and Coalition Strategies and Operations [7]. In this report, David

and Kristin Arney analyzed insurgency and counter insurgency (COIN) operations using a

large scale system of differential equations to model a dynamically changing coalition

network. Using this model, the two analyzed how leadership, promotion, recruitment,

financial resources, operational techniques, network communications, coalition

cooperation, logistics, security, intelligence, infrastructure development, humanitarian aid,

and psychological warfare affected COIN tactics, operations and strategy. A total of 19

dependent factors, with 19 equations and over 80 parameters were developed for the

model. Using these network models and the system of differential equations, Arney and

Arney then ran an eight-stage test scenario to demonstrate the behavior or their model.

Using this model, the two were able to determine optimal counter-insurgency strategies

[7]. Similar to how Arney and Arney analyzed how certain parameters affected their
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insurgency, counter-insurgency model, we wish to analyze how certain parameters will

affect our IED supply chain model. In this thesis, we will also employ the use of systems

of differential equations and parameters to study the behavior of our model. Specifically,

we model the IED supply chain and search our parameter set for which parameter values

best fit collected IED data.

2.2.2 JIEDDO Proposal Selection Model.

In 2009, 1Lt Christina Willy authored a master’s thesis titled Robust Sensitivity

Analysis for the JIEDDO Proposal Selection Model [32]. In this thesis, Willy analyzes

JIEDDO’s proposal solicitation process; a tool that allows organizations both military and

civilian to request funding for the development of specific C-IED projects. Willy

employed decision analysis methods to the JIEDDO proposal selection process in order to

help decision makers filter out proposals that did not adequately satisfy C-IED objectives.

Specifically, Willy applied value focused thinking to analyze proposals [32]. Using this

technique, Willy evaluates JIEDDO’s pre-developed proposal value model to determine

whether or not the value model accurately reflected JIEDDO’s decision process. Willy’s

research methods were aimed at gauging the efficacy of C-IED projects before being

implemented in order to determine which projects to select. In this thesis, we wish to

provide intuition on how effective certain projects are after being implemented. After

applying our least squares method, we will obtain an estimate for the behavior of the

entire supply chain. With this knowledge, we can gauge how effective our past C-IED

efforts were by looking at its effect on our IED supply chain at past times.

2.2.3 Agent Based Simulation.

Other works involved with C-IED includes Dr. Anthony Dekker’s Agent-Based

Simulation for Counter-IED: A Simulation Science Survey [10]. This paper uses

agent-based simulations to model the human networks that place IEDs. Dekker

categorizes two main human aspects of IED placement. The first is motivation which
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affects the number of IEDs placed per day and the second is cognition which affects the

choice of location for IEDs. Dekker goes on to label counter-insurgency forces as blue

forces and insurgency forces as red forces. He advocates simulations in which he models

motivation as being affected by attitudes and emotions within society and models

cognition as being affected by learning and adapting to opposing forces’ responses.

Dekker terms the co-evolutionary aspect of COIN operations: blue actions alter how red

forces conduct operations and vice versa [10]. He then goes on to mention that these

simulations can be used to explore this adaptive behavior. Dekker’s research aims to create

a model of how IED placement strategies are affected by the actions of other players. In

this thesis, we will model our IED flow rate parameters to also be affected by the actions

of other players. In our nonlinear model (see Section 3.1.3), we will set up a model where

the flow of IEDs from one state to another is affected by both coalition and enemy actions.

2.2.4 Optimization, Games and Adaption.

Dekker also published Optimization, Games, Adaptation: Three Perspectives on

Operations Research for Counter-IED [11]. In this paper, Dekker examines optimization

approaches for C-IED actions. Dekker also analyzes game theoretic approaches where

both blue and red forces can adapt to each others’ actions. In terms of optimization,

Dekker looks at which blue (C-IED) strategy ensures the best chance of survival when

having to traverse a simulated terrain grid. This approach assumes a fixed red strategy. He

then determines optimal strategies for both sides. Dekker then goes even further to

incorporate adaptivity, in which enemies can devise counter counter-IED strategies. He

concludes that the most rapidly adapting side has the advantage [11].

2.3 IED Supply Chain Models

JIEDDO’s first area of focus in their C-IED policy stresses the need for the U.S. to

attack the networks used by enemy forces. In order to better understand how enemy forces

are employing IEDs, we must first model the process of producing and emplacing IEDs
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through a supply chain perspective. By modeling the process in which enemy forces

obtain material and construct, emplace and detonate IEDs, we can study the behavior of

IED threats as we aim to implement C-IED strategies. Specifically, we will represent the

lifespan of an IED using a supply chain model.

Although enemy forces may have non-traditional avenues for obtaining materials

needed to rapidly construct IEDs, the general supply chain process for IEDs remain

similar to those of traditional products. The traditional supply chain is pictured in Figure

2.1 taken from Beamon’s Supply Chain Design and Analysis: Models and Methods [8].

For the case of IEDs, there are both traditional and non-traditional suppliers for materials,

represented by a single supplier entity in the figure below. Manufacturing facilities may be

paralleled by factories where enemies construct IEDs or even homes where homemade

IEDs are built. Further in the process, IEDs may be stored or transported straight to the

battlefield where they are then emplaced and left to detonate.

Figure 2.1: Supply Chain Diagram
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Currently, there are published reports that demonstrate supply chain models directly

applied to IED life spans. Specifically, Modeling Behavioral Activities Related to

Deploying IEDs in Iraq by Weiss, Whitaker, Briscoe and Trewhitt presents a model which

takes into account an IED disruption model, materials and supplies gathering model and

an IED motivation model [9]. The collective model is depicted in Figure 2.2 below.

Figure 2.2: Diagram of IED Core Model

Looking at just the IED disruption submodel, we have a supply chain model that

illustrates the life cycle of IEDs as they go from being constructed to being detonated.

This model introduces five states in which IEDs can exist: construction, inventory storage,

emplaced, detonated and disrupted. According to the submodel, U.S. forces can disrupt

the detonation of IEDs in three spots: early disruption which corresponds to seizing IEDs

while they are being constructed, middle disruption which corresponds to seizing IEDs
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when they are in storage and late disruption which corresponds to neutralizing emplaced

IEDs [9].

Weiss, Whitaker, Briscoe and Trewhitt go on to use their models for what-if analysis.

Using these techniques they illustrate the factors and influences that are more significant

than others. An example they present is using the model to determine the effects of

various deterrents on the overall rate of IED detonation. The factors that were considered

in this case were insurgent disengagement effectiveness, IED disruption effectiveness and

supply gathering interference. From here, studies then determined that disengagement

yielded the largest long-term (36 months) reduction in overall IED detonations while

increase in supply interference yielded the smallest [9]. The models that Weiss, Whitaker,

Broscoe and Trewhitt used in their technical report regarding IEDs in Iraq is used to

formulate our own IED supply chain model which is discussed in the next section.
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III. Methodology

3.1 Modeling the Supply Chain

3.1.1 Mathematical Model Background.

Using the work of Weiss, Whitaker, Broscoe and Trewhitt [9], we develop our own

supply chain model for IED production. We focus on only the IED disruption submodel

from Figure 2.2, using four stages to model the IED supply chain: construction, emplaced,

detonated and found. We also incorporate disruption possibilities similar to the IED

disruption submodel. In our model, we include two opportunities for disruption, one

during the transition from construction to being emplaced and one from being emplaced to

detonation. Our IED supply chain model is depicted in Figure 3.1 below.

Figure 3.1: IED Supply Chain Model

In our IED model above, the boxes represent the four states of the IED lifespan: C

for construction, E for emplaced, D for detonated and F for found. The arrows represent

transitions while αi and βi represent the transition rates. We see that α1 and α2 correspond

to the rate at which our enemies are transporting IEDs from the construction state to the
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emplaced state and to the rate at which emplaced IEDs are being detonated, respectively.

Also, α0 corresponds to the rate at which IED constructors are receiving materials to

produce IEDs. Lastly, β1 and β2 represent the rates in which we disrupt IEDs from the

constructed and emplaced states, respectively.

It is important to note one key difference between our supply chain model and the

one used by Weiss, Whitaker, Broscoe and Trewhitt [9]. Instead of using five states, we

merge the inventory storage state into the construction state to create a more compact four

state model. Similarly, we combine early and middle disruption of the IED disruption

submodel into one disruption rate β1. The reason we chose to make these simplifications

is to adhere to JIEDDO’s three main focal points in battling IEDs. We see that the first

focal point which aims to disrupt the enemy’s ability to fund, develop and emplace IEDs

corresponds to both early and middle disruption while the second focal point, which aims

to disarm IEDs that have already been emplaced corresponds to late disruption.

Using this supply chain model to depict how enemies produce, emplace and detonate

IEDs we then develop a mathematical model. In developing this model for the IED

lifespan, we aim to mimic existing models that have been used to represent behavior

similar to that of the IED supply chain. One such model is the Susceptible, Infected and

Removed (SIRS) model used in epidemiology [30].

The SIRS model is an important part of mathematical biology. It is an important tool

used for gauging the impact of different vaccination programs on the control and

eradication of certain diseases. In this model, there exist three states, each representing a

portion of the population. The susceptible group contains those who can receive the virus

from the members of the infected group. The last group is the removed group which

represent those who have recovered from the disease. They are then free of the infection

but rejoin susceptible group in the SIRS model. Figure 3.2 below illustrates the SIRS

model [30].
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Figure 3.2: SIRS Model

In this model, we see that β represents the rate at which susceptible victims become

infected, ν represents the rate at which infected members become removed and γ

represents the rate at which removed members rejoin the susceptible population.

Mathematically modelling this dynamic process, we get the following equations for the

population.

Ṡ = −βS I + γR (3.1)

İ = βS I − νI (3.2)

Ṙ = νI − γR (3.3)

The SIRS model is widely used in mathematical biology and provides us a way to

mathematically model our IED supply chain. Both the SIRS model and our IED supply

chain model possess similar behavior; there exists states which individuals can exist in

and there exists flow rates in which individuals move from one state to another. Thus, it is

reasonable to model our supply chain to be similar to the SIRS model. More information

about the SIRS model can be found in [30].
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Similarly, we derive equations to model the dynamic process of our IED supply chain

model. For this thesis, we consider two cases. In the first case, we assume that our rates, αi

and βi, are constant parameters. In a later section we will introduce time dependent rates.

3.1.2 Formulating the Linear Model.

Figure 3.3: IED Supply Chain Model

Assuming constant rates and applying the same methods used to derive the SIRS

model’s differential equations, we derive the following system of equations for our IED

model:

Ċ = α0 − (α1 + β1)C (3.4)

Ė = α1C − (α2 + β2)E (3.5)

Ḋ = α2E (3.6)

Ḟ = β1C + β2E (3.7)

Here it is important to consider the units in this system. Since C, E, D and F represent our

states, they must have units of IEDs, thus Ċ, Ė, Ḋ and Ḟ have units of IEDs
time . α0 also has

units of IEDs
time , while α1, α2, β1, β2 (and β, γ, ν from the SIRS model) have units of 1

time .
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Physically, this means that α0 represents a flow rate: the number of IEDs flowing into the

construction phase over time while the other four parameters represent frequency. That is,

α1 represents the amount of IEDs in the construction state that flow to the emplaced state

over a given time period. α2, β1 and β2 behave similarly, thus we see that α0 has different

units compared to the rest of the rate parameters

We now have a system of four equations for our IED model. If αi and βi are constants

these equations are all linear and have constant coefficients, allowing us to solve C(t),

D(t), E(t) and F(t) explicitly. Solving each of these differential equations, we get the

following solutions:

C(t) =
α0

r1
+ k1e−r1t (3.8)

E(t) =

(
α0α1

r1r2

)
−
α1k1e−r1t

r1 − r2
+ k2e−r2t (3.9)

D(t) =

(
α2α0α1

r1r2

)
t +

α2α1k1e−r1t

r1 (r1 − r2)
−
α2k2e−r2t

r2
+ k3 (3.10)

F(t) =

[
β1α0

r1
+

(
β2α0α1

r1r2

)]
t −

β1k1e−r1t

r1
+
β2α1k1e−r1t

r1 (r1 − r2)
−
β2k2e−r2t

r2
+ k4 (3.11)

Where ki are integration constants that are solved for by imposing initial conditions and

ri=αi+βi. In this thesis, we consider ki parameters as well. We do not know how many

IEDs are in C and D at time t = 0, thus k1 and k2 will need to be estimated using our least

squares problem. Although we do know how many IEDs are detonated and found at time

t = 0, we still allow them to be free parameters. Doing so allows us to better fit data in the

least squares problem defined in section 3.2.2. Solving for initial conditions, we then get
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the following equations:

C(0) =
α0

r1
+ k1 (3.12)

E(0) =

(
α0α1

r1r2

)
−

α1k1

r1 − r2
+ k2 (3.13)

D(0) =
α2α1k1

r1 (r1 − r2)
−
α2k2

r2
+ k3 (3.14)

F(0) = −
β1k1

r1
+

β2α1k1

r1 (r1 − r2)
−
β2k2

r2
+ k4 (3.15)

3.1.3 Formulating the Nonlinear Model.

We now formulate the supply chain model which mimics a basic strategy in which

both coalition forces and insurgents adapt. We can model this situation by assuming our

flow rates are functions of C(t),D(t), E(t) and F(t). Let us consider each of the new flow

rates, denoted by a tilde.

3.1.3.1 Emplaced to Detonated: α̃2.

In our IED supply chain model, α̃2 physically represents the rate at which emplaced

IEDs detonate. For our IED model, we assume the rate at which IEDs detonate is

independent of coalition or enemy forces’ actions. That is, we assume that neither

coalition forces nor insurgents have the power to influence the amount of emplaced IEDs

that detonate and that this rate is independent of both sides’ actions. Thus, in this case, we

keep α̃2=α2 as constant.

3.1.3.2 Found from Construction: β̃1.

β̃1 represents the rate at which coalition forces find IEDs in the construction state. In

a basic strategy, we expect that the more IEDs that detonate, the more U.S. forces will

focus on finding IEDs in construction. That is, β̃1 must be directly influenced by the rate at

which D grows, Ḋ = α2E. Thus, we suggest the rate model:

β̃1 = β1 + γ1α2E

where β1 is a constant that represents a minimum flow rate in case Ḋ = 0 and γ1 is also a

constant representing the influence of Ḋ on the coalition force’s strategy.
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3.1.3.3 Found from Emplaced: β̃2.

We assume β̃2 to have similar dependence as β̃1. That is, if more IEDs are detonating,

coalition forces will look to find more emplaced IEDs. Thus, we suggest the rate model:

β̃2 = β2 + γ2α2E

where β2 is a constant that represents a minimum flow rate in case Ḋ = 0 and γ2 is also a

constant representing the influence of Ḋ on the coalition force’s strategy. We see that γ1

and γ2 essentially represents how coalition forces decide to divide their efforts between

attacking the network and defeating the device as a result of IED detonations.

3.1.3.4 Construction to Emplaced: α̃1.

We assume that the enemy force’s basic strategy will be to emplace more IEDs if

more are detonating and/or are being found after being emplaced, represented by Ḋ = α2E

and β̃2E = (β2 + γ2α2E)E respectively. Thus, we suggest the rate model:

α̃1 = α1 + γ3( β2 + γ2α2E + α2 )E

where α1 is a constant that represents a minimum flow rate and γ3 is also a constant

representing the influence of found and detonated IEDs on the insurgent force’s strategy.

3.1.3.5 Raw Material to Construction: α̃0.

We wish to impose a limit for α̃0 as a function of C(t). That is, as C(t) reaches some

critical capacity, C∗, α̃0 must approach 0 and when C(t) approaches 0, α̃0 must approach a

maximum flow rate. Physically, this represents the speeding up and slowing down of

inflow of resources as the number of IEDs in construction reaches 0 and its maximum

capacity, respectively. Thus, we suggest the rate model:

α̃0=(1 − C
C∗ )α0

where α0 is the maximum flow rate. We see this formula for α̃0 meets our criteria outlined

above.
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We note that this is not the only function that can satisfy our criteria. We impose:

α̃0 = f (C∗,C∗)α0

f (C∗,C∗) = 0

f (0,C∗) = 1

This can be acheived by other functions, for example:

f (C,C∗) =

(
1 −

C
C∗

)p

p ∈ R

For our model, we choose p = 1.

Now, we see our IED supply chain is modeled by the system of differential equations

in 3.16-3.19. Furthermore, we notice that our nonlinear model contains our linear model.

That is, if we let C∗ approach infinity and set γ1 = γ2 = γ3 = 0, we have our linear model,

however, our nonlinear case includes an extra four degrees of freedom in C∗, γ1, γ2 and γ3.

Thus, the goal is to apply least squares methods on the nonlinear case to attempt to

improve our results from the linear case.

Ċ = (1 −
C
C∗

)α0 − (α1 + γ3(β2 + γ2α2E + α2)E + β1 + γ1α2E)C (3.16)

Ė = (α1 + γ3(β2 + γ2α2E + α2)E)C − (α2 + β2 + γ2α2E)E (3.17)

Ḋ = α2E (3.18)

Ḟ = (β1 + γ1α2E)C + (β2 + γ2α2E)E (3.19)

< C(0), E(0),D(0), F(0) > = < C0, E0,D0, F0 > (3.20)

3.1.4 Proving Uniqueness of the Solution to the Nonlinear Case.

Before solving our system of differential equations for the nonlinear case, we must

first prove that the solution is unique. To do this, we first introduce preliminary definitions

and lemmas.
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Definition 3.1. A vector function f (x) is a Lipschitz continuous function in x if there

exists a constant m, the Lipschitz constant, such that

|| f (x) − f (y)|| ≤ m||x − y||

Lemma 3.2. If f (x) has bounded first-partial derivatives in each of x1,x2,...,xn, then f (x)

is a Lipschitz continuous function [31].

Lemma 3.3. Suppose f (x) is Lipschitz continuous for all x, y in some interval

[x0 − δ, x0 + δ]. Then a unique solution x(t) of

x′(t) = f (x)

x(t0) = x0

exists for all t in some interval t ∈ (t0 − ε, t0 + ε) [1].

We assume that αi, βi and γi are finite and that C∗ ≥ 1, These assumptions stem from

our physical representation of the IED supply chain since we do not investigate infinite

supply chains or supply chains with construction capacity less than one IED. We also see

that αi, βi, γi, C(t), E(t), D(t), F(t) ≥ 0

Theorem 3.4. Assuming αi, βi and γi are finite and that C∗ ≥ 1, then the solution to the

system of nonlinear differential equations (3.16-3.20) is unique.

Proof. We see that our system of differential equations can be written in the form

x′(t) = f (x)

x(t0) = x0

where

x(t) =



C(t)

E(t)

D(t)

F(t)
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and x0 is a vector with our initial data for C(t), E(t), D(t) and F(t) as elements. In this

case, f (x) is a vector function with the right hand sides of equations (3.16 − 3.19) as

entries. We now calculate the first partial derivatives of f (x):

∂ f
∂C

=



−
α0
C∗ − (α1 + γ3(β2 + γ2α2E + α2)E + β1 + γ1α2E)

α1 + γ3(β2 + γ2α2E + α2)E

0

β1 + γ1α2E



∂ f
∂E

=



−γ3β2C − 2γ2γ3α2CE − γ3α2C + γ1α2C

γ3β2C + 2γ2γ3α2CE + γ3α2C − α2 − β2 − 2γ2α2E

α2

γ1α2C + β2 + 2γ2α2E


∂ f
∂D

= 0

∂ f
∂F

= 0

Since each equation in our system is continuous with respect to C(t) and E(t) we see

that C(t) and E(t) are bounded over a finite time interval. Let C(t) ≤ Ĉ, E(t) ≤ Ê, |αi| ≤ α̂i,

|βi| ≤ β̂i, |γi| ≤ γ̂i be the bounds. Then we have:

| −
α0
C∗ − (α1 + γ3(β2 + γ2α2E + α2)E + β1 + γ1α2E|

≤ α̂0 + (α̂1 + γ̂3(β̂2 + γ̂2α̂2Ê + α̂2)Ê + β̂1 + γ̂1α̂2Ê)

|α1 + γ3(β2 + γ2α2E + α2)E|

≤ α̂1 + γ̂3(β̂2 + γ̂2α̂2Ê + α̂2)Ê

|β1 + γ1α2E|

≤ β̂1 + γ̂1α̂2Ê

| − γ3β2C − 2γ2γ3α2CE − γ3α2C + γ1α2C|
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≤ γ̂3β̂2Ĉ + 2γ̂2γ̂3α̂2ĈÊ + γ̂3α̂2Ĉ + γ̂1α̂2Ĉ

|γ3β2C + 2γ2γ3α2CE + γ3α2C − α2 − β2 − 2γ2α2E|

≤ γ̂3β̂2Ĉ + 2γ̂2γ̂3α̂2ĈÊ + γ̂3α̂2Ĉ + α̂2 + β̂2 + 2γ̂2α̂2Ê

|α2|

≤ α̂2

|γ1α2C + β2 + 2γ2α2E|

≤ γ̂1α̂2Ĉ + β̂2 + 2γ̂2α̂2Ê

We then consider the infinity-norm: ||A||∞ = max
i

(
n∑

j=1
|ai, j|) Thus, with our assumptions on

αi, βi, γi and C∗ and applying Lemma 3.2 and Lemma 3.3, we have that our solution is in

fact unique. Here we note the importance of assuming that C∗ ≥ 1 as it bounds C∗ away

from 0, thus preventing α0
C∗ from becoming unbounded.

�

For more information regarding the existence and uniqueness of solutions to

nonlinear differential equations, refer to [31].

3.1.5 Solving the System of Differential Equations.

In order to solve for C(t), E(t), D(t) and F(t), governed by the system of differential

equations in 3.16-3.20, we must employ the use of a numerical differential equations

solver. One such solver is MATLAB’s ODE45 [25]. Solutions of this numerical solver

are obtained using the Runge-Kutta(4,5) method explained in the sections below.

3.1.5.1 Runge-Kutta Methods.

The goal of a Runka-Kutta method is to seek solutions, x(t), of

x′(t) = f (t, x) (3.21)

x(t0) = x0 a ≤ t ≤ b (3.22)
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on an interval a ≤ t ≤ b, where f is a given vector valued function of n + 1 variables and

x0 is a given n-dimensional vector. The Runka-Kutta(4,5) method is an explicit single step

method.

Definition 3.5. An explicit single step method for numerical solutions of 3.21-3.22 is a

method of the form

x0 = x(t0)

xk+1 = xk + hφ(tk, xk, h) 0 ≤ k ≤ N − 1

where φ is a given function, h is the time step used to discretize our time interval [a, b] and

N + 1 is the number of time points in our discretization. This method allows us to obtain

the solution at discretized time points, x0, x1,...xN.

Definition 3.6. In general, Runge Kutta methods are of the following form

x0 = x(t0)

xk+1 = xk + hφ(tk, xk, h) 0 ≤ k ≤ N − 1

where

φ(tk, xk, h) =

R∑
r=1

cr Kr

K1 = f (t, x)

Kr = f (t + arh, x + h
r−1∑
s=1

brsKs)

ar =

r−1∑
s=1

brs r = 2, 3, ...,R

Specifically, a method of this form is called an R-stage Runge Kutta method.

Example 3.7. Runge Kutta 4th Order
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One well known Runge-Kutta scheme is the 4-th order Runge-Kutta scheme (RK4),

where the order refers to the truncation error (in this case O(h4)). The RK4 method takes

the form:

x0 = x(t0)

xk+1 = xk +
h
6

[K1 + 2K2 + 2K3 + K4]

K1 = f (tk, yk)

K2 = f (tk +
h
2
, yk +

h
2

K1)

K3 = f (tk +
h
2
, yk +

h
2

K2)

K4 = f (tk + h, yk + hK3)

φ(tk, xk, h) =
h
6

[K1 + 2K2 + 2K3 + K4]

In this case, we have

r cr ar br1 br2 br3

1 1
6 0 - - -

2 2
6

1
2

1
2 0 0

3 2
6

1
2 0 1

2 0

4 1
6 1 0 0 1

Table 3.1: RK4 Coefficients

For readability, Runge-Kutta coefficients are arranged in what is called a Butcher

Tableau of the form:
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0

a2 b21

a3 b31 b32

...
...

. . .

aR bR1 bR2 · · · bR,R−1

c1 c2 · · · cR−1 cR

Table 3.2: Generic Butcher Tableau

For RK4, we then have the following Butcher Tableau:

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

2
6

2
6

1
6

Table 3.3: RK4 Butcher Tableau

For more information regarding numerical differential equations solvers, refer to [6].

3.1.5.2 Dormand-Prince Method.

Given a problem in the form of equations (3.21-3.22), MATLAB’s ODE45 uses the

Runka-Kutta(4,5) method, also known as the Dormand-Prince method, to obtain a

solution. The Dormand-Prince method produces a fifth order solution while using a

fourth-order estimate of the error [25]. In this section, we discuss the Dormand-Prince

method and how it uses an adaptive step size technique in order to achieve specified error
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tolerances. We wish to use this built in package since it will allow for easy replication and

application for future problems based on the research in this thesis. Moreover, ODE45 is

faster and more accurate than other built in solvers [25].

The Dormand-Prince Method can be summarized with the Butcher Tableau in Table

3.4. The first row of c coefficients give the fifth-order solution and the second row gives

the fourth-order solution.

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

1 35
384 0 500

1113
125
192

−2187
6784

11
84

5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40 Fifth Order

35
384 0 500

1113
125
192

−2187
6784

11
84 0 Fourth Order

Table 3.4: Dormand-Prince Butcher Tableau

Thus we see that the fifth-order solution can be obtained by iterating using the

following equation:

x̃ j+1 = h(
5179

57600
K1 +

7571
16695

K3 +
393
640

K4 −
92097

339200
K5 +

187
2100

K6 +
1

40
K7)

and that the fourth-order solution can be obtained by iterating using the following

equation:

x j+1 = h(
35

384
K1 +

500
1113

K3 +
125
192

K4 −
2187
6784

K5 +
11
84

K6)
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We can then approximate the local truncation error as ||x̃ j+1 − x j+1||. The procedure

for implementing an adaptive step size technique is summarized in the steps below.

1. h given as initial step size, ε given as error tolerance

2. t j+1 = t j + h

3. Calculate x̃ j+1 and x j+1

4. If ||x̃ j+1 − x j+1|| ≤ εh, iterate using current step size h. In this case, we see that the

approximated local error meets our error tolerance, hence we iterate without

changing step size.

5. If criteria in step 4 is not met, let q =
(

εh
2||x̃ j+1−x j+1 ||

)1/4
. In this case, q is a scaling

factor. We wish to determine qh that will meet our error tolerance. Specifically, qh

must satisfy ε > ||x̃ j+1−x j+1 ||

qh . That is, we need

ε >
||x̃ j+1−x j+1 ||

qh = O((qh)4) = kq4h4 =
q4

h ||x̃ j+1 − x j+1|| since ||x̃ j+1 − x j+1|| = O(h5).

Hence, we need ε > q4

h ||x̃ j+1 − x j+1||, finally giving us, q <
(

εh
||x̃ j+1−x j+1 ||

)1/4
.

Furthermore, we incorporate a ”safety” factor of 1
2 to get q =

(
εh

2||x̃ j+1−x j+1 ||

)1/4

6. • If q ≤ 0.1, let h = .1h

• If .1 < q ≤ 4, let h = qh

• If q > 4, let h = 4h

• If h > hmax, let h = hmax, where hmax is the maximum allowed step size

7. Iterate until desired time is achieved

The criteria in step 6 may be altered as desired. More information on adaptive time step

methods can be found in [6] [17].

MATLAB’s ODE45 can use the Dormand-Prince method and output solutions at

given time steps. In our nonlinear model, we use integer values for our time discretization
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to represent the period of time between the data points we gather (days, weeks, months).

Thus, we use MATLAB’s ODE45 to provide solutions to our problem:

x′(t) = f (t, x)

x(t0) = x0 a ≤ t ≤ b

where f (t, x) is defined by equations (3.16 − 3.20), x0 are the initial values of C(t), E(t),

D(t) and F(t) and [a, b] is the time period which we solve our problem for.

3.1.6 Convergence of ODE45.

We now wish to determine why we believe the answers obtained using numerical

differential equations solvers. To do this, we investigate the convergence of solutions

provided by ODE45.

Definition 3.8. A method is convergent if the error, ||EN || → 0 as h→ 0 for any initial

data y0. In this case, ||EN || = ||ỹN − yN ||, where yN is the solution obtained by the numerical

differential equation solver at the final time T = Nh and where ỹN is the exact solution at

final time T .

Since yn is the solution obtained by our solver, we see that by the definition of

truncation error, τh, we have ỹn+1 = H(ỹn) + hτh, where H is our scheme (such as RK4

defined in Example 3.7). In the case of ODE45 where we have adaptive time steps, we

have ỹn+1 = H(ỹn) + hnτh,n, where hn is the timestep taken at the n-th iteration and τh,n is

the corresponding truncation error with the given timestep (since ODE45 solutions are

fifth order accurate, τh,n=O(h5
n)). Thus we have:

||EN || = ||ỹN − yN ||

= ||H(ỹN−1) − H(yN−1) + hN−1τh,N−1||

≤ ||H(ỹN−1) − H(yN−1)|| + ||hN−1τh,N−1||
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Applying the multivariate mean value theorem,

H(ỹN−1) = H(yN−1) + J(H)(ξN−1)(ỹN−1 − yN−1)

where J(H)(ξN−1) is the Jacobian of H evaluated at ξN−1 which lies between ỹN−1 and yN−1.

Denote σN−1 = ||J(H)(ξN−1)||. We then have :

||EN || ≤ ||J(H)(ξN−1)(ỹN−1 − yN−1)|| + ||hN−1τh,N−1||

≤ σN−1||(ỹN−1 − yN−1)|| + ||hN−1τh,N−1||

≤ σN−1||EN−1|| + ||hN−1τh,N−1||

≤ σN−1σN−2||(ỹN−2 − yN−2)|| + σN−1||hN−2τh,N−2|| + ||hN−1τh,N−1||

...

≤ σN−1σN−2...σ0||(ỹ0 − y0)|| + σN−1σN−2...σ1||h0τh,0|| + ... + σN−1||hN−2τh,N−2|| + ||hN−1τh,N−1||

At our initial time, ỹ0 = y0, thus we have:

||EN || ≤ σN−1σN−2...σ1||h0τh,0|| + ... + σN−1||hN−2τh,N−2|| + ||hN−1τh,N−1||

≤

N−1∑
j=1


 j∏

q=1

σN−q

 ||hN− j−1τh,N− j−1||

 + ||hN−1τh,N−1||

Here, we see that τh,n represents how consistent our calculations are at the n-th iteration

while the σn terms, are the growth factors of the error at the n-th iteration. This represents

the stability of our solution.

We now take a look at σn obtained from our system of differential equations and

ODE45. Since, we have four equations in our system of differential equations, we will

compute four sets of sigma values, σ(m)
n , for m = 1, 2, 3, 4 and n = 1...N − 1. Using

standard linear stability analysis (see [6]), we can obtain σ(m)
n if we have the eigenvalues

of the Jacobian of f (x) evaluated at yn, where f (x) is the right hand side of our system of

differential equations and if we have our time steps taken at iteration n. For example,

using RK4, σ(m)
n is computed with:

σ(m)
n = 1+ hn

6 (λm
n +2λm

n (1+ hn
2 λ

m
n )+2λm

n (1+ hn
2 λ

m
n (1+ hn

2 λ
m
n ))+λm

n (1+hnλ
m
n (1+ hn

2 λ
m
n (1+ hn

2 λ
m
n ))))
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where λm
n is the m-th eigenvalue of the Jacobian of f (x) evaluated at yn and hn is the time

step takin at the n − th iteration. The σ(m)
n values for ODE45 are calculated similarly, using

the Butcher tableau for the Dormand-Prince method [17], in place of the RK4 Butcher

Tableau.

Running ODE45 to solve the problem given in equations (3.16-3.20) with a random

set of parameters and initial values, we obtain the following σ(m)
n values in Figure 3.4. We

do not observe σ(3)
m and σ(4)

m . Given the nature of our system of differential equations,

λ3
n = λ4

n = 0 for n = 1, ...,N − 1. Hence σ(3)
n = σ(4)

n = 1 which is on the boundary of our

stability region for Runge-Kutta schemes.

Figure 3.4: Sigma Values for ODE45 Run. We plot the two σn values for each time step

taken. Here ODE45 outputs the solution for roughly N = 1400 time points. In this case, the

first set of sigma values are greater than 1 or remain close to 1. For a convergent method,

we wish to observe growth rates, σn, less than 1. We see that our σ(1)
n values may lead our

inequality constraint to not meet convergence criteria.
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Calculating the sum product, we have:

||EN || ≤ 1.2e10

||EN || ≤ 5.3e − 10

for the solutions of the first and second equations in our system, respectively. Clearly, this

calculation does not give us adequate error bounds for the solutions to our first equation.

We must observe convergence indirectly. To resolve this matter, we perform the following

steps:

1. Solve the problem implementing our own code (running RK4)

2. Calculate the sum product inequality for our implementation of RK4 and observe

adequate inequality constraints for the RK4 solutions

3. Compare the solutions from our implementation of RK4 to the results of ODE45

Implementing an RK4 solver with a fixed time step h=5e-5, we obtain the following

inequality constraint:

||EN || ≤ ||J(H)(ξN−1)(ỹN−1 − yN−1)|| + ||hτh||

≤ σN−1||(ỹN−1 − yN−1)|| + ||hτh||

≤ σN−1||EN−1|| + ||hτh||

≤ σN−1σN−2||(ỹN−2 − yN−2)|| + σN−1||hτh|| + ||hτh||

...

≤ σN−1σN−2...σ0||(ỹ0 − y0)|| + σN−1σN−2...σ1||hτh|| + ... + σN−1||hτh|| + ||hτh||

At our initial time, ỹ0 = y0, thus we have:

||EN || ≤ σN−1σN−2...σ1||hτh|| + ... + σN−1||hτh|| + ||hτh||

≤


N−1∑

j=1

j∏
q=1

σN−q

 + 1

 ||hτh||
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Supposing our method is consistent with τh = O(hp), then we have convergence if((
N−1∑
j=1

j∏
q=1

σN−q

)
+ 1

)
≤ o(h−(p+1))

.

Calculating the sum product term for the RK4 implementation (p = 4), we obtain:((
N−1∑
j=1

j∏
q=1

σ(1)
N−q

)
+ 1

)
= 9.6e14 = O( 1

h3 ) ≤ o(h−(p+1))

((
N−1∑
j=1

j∏
q=1

σ(2)
N−q

)
+ 1

)
= 1.0e3 = O(N) = O( 1

h ) ≤ o(h−(p+1))

Thus, our implementation of RK4 satisfies the convergence criteria. Moreover, in this

case, we get the following inequality constraints:

||EN || ≤ 3.0e − 7

||EN || ≤ 3.2e − 19

Thus, our solutions at final time T are sufficiently close to the exact solutions.

We must now compare the results of our two solvers. To do this, we take the

difference of solutions from the two solvers using decreasing time steps for the RK4

implementation. To observe convergence, our RK4 solution must converge to the ODE45

solution as we decrease the timestep used for our RK4 implementation. Figure 3.5

illustrates the change in the difference between our two solutions, denoted

E(h) = ||yN
ODE45(h) − yN

RK4(h)||, as we decrease our timestep for RK4.
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Figure 3.5: Difference Between RK4 and ODE45 Solutions as a Function of Time Step.

Here, we plot the log(E(h)) over the log(h) along with a line of slope= −4. We observe

that as we decrease h for our implementation of RK4, the solution converges to the solution

from ODE45. The loglog plot demonstrates that the RK4 solution converges at slope of −4

which is explained by the fact that RK4 is consistent on the order of O(k4).

Thus, we observe that our solutions from RK4 converges to the ODE45 solution at the rate

of O(k4). Hence, the solutions to equations (316-3.20) using ODE45 are in fact

convergent.

This section illustrated the criteria necessary to test convergence of our numerical

schemes. We implemented our own RK4 scheme, observed convergence and then showed

it converges to the ODE45 solution, thus showing that ODE45 is convergent. For more

information on the convergence of numerical methods, refer to [6].
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3.2 Data Fitting and Least Squares

Now that we have developed and solved the models that illustrates the behavior of

the IED lifespan, we aim to employ the model to learn where IEDs are, at a given time and

how fast they are moving. To do this, we will fit our model to data gathered from the

battlefield.

From the battlefield, we can obtain sample points for both the number of IEDs that

have detonated, D, and the number of IEDs that we find, F, at given times, however, we

do not know how many IEDs are being constructed or emplaced. We also do not know the

rates at which enemy forces are moving IEDs. Solving the least squares problem gives us

an estimate on the entire supply chain. Suppose we cumulatively track the number of

IEDs that detonate and the number of IEDs that are found at a given location for a certain

period. Then, we see that D(t) and F(t) are monotonically increasing functions of time

and our goal is to apply a least squares method on our data points to obtain the best

approximation of our parameters. To do this, we use nonlinear least squares data fitting.

3.2.1 Nonlinear Least Squares Example.

A nonlinear least squares problem is a minimization problem of the form

min
x

f (x) =

√√
n∑

i=1

fi(x)2

where the objective function f (x) is defined in terms of fi. This method is called least

squares due to the fact that we minimize the sum of squares of these functions [12]. In

our least squares problem, x will be represented by our parameter space.

One example of the application of the method of least squares can be seen when

using data points to estimate parameters in mathematical biology. For example, suppose

we collected data points (ti, yi) for i = 1...n which represented the size of a population of

antelope at various times. Suppose we have the data in Table 3.5.
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ti 1 2 4 5 8

yi 3 4 6 11 20

Table 3.5: Antelope Population Data

where times are measured in years and population in hundreds. From population

modeling, we approximate the population as an exponential model

yi ≈ x1ex2ti

where our parameters are x1 and x2. This model is illustrated in the figure below [12].

Figure 3.6: Antelope Population Model

Now using the least squares method, we set up the problem as

minimize
x

f (x1, x2) =

√√
5∑

i=1

((x1ex2ti) − yi)2
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After solving for our optimal parameters x1 and x2 we report our error. In this case

we see that at each data point we have

yi=x1ex2ti + εi

The error is then reported as

Error =

√
5∑

i=1
(εi)2

For more information regarding nonlinear least squares, refer to [12].

3.2.2 Applying Nonlinear Least Squares.

Now, we can apply the least squares method to our IED model. If we sampled the

number of IEDs destructed and found at n + 1 time points, we have the following data set:

• di

• fi f or i = 0, 1, ...n

where di and fi represents the cumulative number of IEDs detonated and found,

respectively at time i.

In our case, we must apply a least squares method to obtain the best parameters for

the IED supply chain model. Applying the least squares method, we have the following

objective function

m(σ)=
√∑n

i=0[(D(t = i, σ) − di)
2

+ (F(t = i, σ) − fi)
2]

where σ is a vector consisting of our parameters. In the linear case,

σ =< k1, k2, k3, k4, α0, α1, α2, β1, β2 > and in the nonlinear case, we have

σ =< C∗, α0, α1, α2, β1, β2, γ1, γ2, γ3,C(0), E(0),D(0), F(0) >. Thus we have a

nine-dimensional and a thirteen-dimensional least squares problem.

After solving for σ we then have all the data needed in order to solve for C(t), D(t),

E(t) and F(t) for all time, thus obtaining an estimate for the entire supply chain behavior.
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3.3 Local Optimization

In order to solve the least squares problem we defined in the section above, we must

find a way to minimize our objective function, m(σ), over possible parameter values. To

solve this minimization problem, we employ MATLAB’s lsqnonlin tool [23]. To use

lsqnonlin, users input the vector valued function: pi(x)=

p1(x)

p2(x)
...

pn(x)


Then, the problem is the restated as the following optimization problem:

minimize
x

||p(x)||22 = minimize
x

(p1(x)2 + p2(x)2 + ... + pn(x)2)

The command x=lsqnonlin(fun,x0) starts at the intial guess point x0 and finds a

minimum of the sum of squares of the function described in fun. Note, ‘fun’ is the vector

valued function, p(x), and should return a vector of values, which MATLAB implicitly

squares and sums up. Users can also input upper and lower bounds for the parameter

space as well as other options. Refer to MATLAB’s lsqnonlin documentation for more

details [23].

To solve the nonlinear least squares problem, lsqnonlin uses a trust region

reflective algorithm [27]. This algorithm only solves systems that are not

underdetermined, that is there are at least as many data points as unknown parameters.

Many methods of the MATLAB Optimization Toolbox are based on trust regions. To

understand the trust region approach, let us consider minimizing f (x). Supposing we are

at a point x, in n-space and wish to iterate and improve our function value. The goal is to

approximate f with a simpler function q, which reasonably reflects the behavior of the

function f in neighborhood N around the point x. This neighborhood is the trust region.
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This is reasonable as for general, smooth nonlinear functions, local approximate models

fit the original function. A trial step s is computed by minimizing(approximately) over N.

This creates the trust region subproblem:

minimize
s

[q(s), s ∈ N]

The current point is updated to x + s if f (x + s) < f (x). Otherwise, the current point

remains unchanged and the trust region N shrinks. In this case, we see that our trust region

resulted in an inaccurate approximation. Thus, we shrink the region and the trial step

computation is repeated.

The key questions in the trust region reflective algorithm are how to choose and

compute the approximating function q and how to choose and modify the trust region N.

In the trust region method, the quadratic approximation, q, is defined by the first two terms

of the Taylor approximation of f at x and the neighborhood N is usually either spherical

or ellipsoidal in shape. We see by Taylor expanding to two terms, we get:

f (x + s) = f (x)+sT g + sT Hs
2

Where H is the Hessian matrix associated with f at x, and g is the gradient of f at x. Thus,

to find (x + s) such that f (x + s) < f (x), the trust region subproblem then becomes

minimize
s

[sT g +
sT Hs

2
]

such that ||Ds||2 ≤ δ. Where D is a positive diagonal scaling matrix and δ is a positive

scalar. This inequality constraint ensures that we minimize within our trust region.

Algorithms for solving the equation above exist; however, they may involve the

computation of a full eigensystem which requires time proportional to several

factorizations of H. Therefore, we use a separate approach to solving the trust region

problem outlined in MATLAB’s Unconstrained Nonlinear Optimization Algorithms [27].

To solve the trust region problem, we restrict the trust-region problem to a two

dimensional subspace S . The work now lies in computing the subregion. We define S as
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the linear space spanned by the vectors s1 and s2, where s1 is in the direction of the

gradient and s2 is either a solution to

H· s2 = -g

or

sT
2 · H · s2 < 0

Thus, we now minimize the trust region subproblem along the plane spanned by s1

and s2. The iteration performed is then:

1. Formulate the two dimensional trust region-subproblem

2. Solve the equation above to determine the trail step s

3. If f (x + s) < f (x), then x = x + s. Else, shrink the trust region and reiterate.

4. Adjust δ

These steps are repeated until we obtain one of the following stopping criteria:

• MaxFunEvals: Maximum number of function evaluations allowed has been reached

• MaxIter: Maximum number of iterations allowed has been reached

• TolFun: Lower bound for change in function value is reached

• TolX: Lower bound for norm of change in x is reached

If lsqnonlin stops by acheiving TolFun or TolX, the run is considered to have

converged. For more information on the trust region reflective algorithm refer to [27].

3.4 Global Optimization

3.4.1 Introduction.

Using a local optimization solver gives us a look at what the minimizing parameter

vector may be, however, the results may not be the most optimal fit to our data. It is
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possible that our lsqnonlin solver obtains a solution that represents the minimum of our

objective function in only a local neighborhood. In order to arrive at the best parameter

estimation, we need to implement a global optimization solver. This will ensure that we

obtain the best fitting parameter estimate for our data.

3.4.2 Example(Rastrigin’s Function).

To illustrate this behavior, consider the plot of Rastrigin’s function in Figure 3.7

below [24]. The Rastrigin function is defined as:

Ras(x) = 20 + x2
1 + x2

2 − 10(cos(2πx1) + cos(2πx2))
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Figure 3.7: Rastrigin’s Function

We see that Rastrigin’s function contains many different local minima, represented

by the valleys in the plot. However, this function has only one global minimum located at

(0,0,0). At any of the other local minima, the function values are greater than 0. We also

note that the farther away the local minima is from the origin, the larger the function value

at the minima is.

Rastrigin’s functions represents a good example of how a local optimization solver

can fail to obtain correct results [24]. The existence of numerous different local minimas
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creates the possibility that our local optimization solver may give us a solution that is only

the minimum in a given neighborhood and not the entire feasible region. For these

reasons, we must implement a global optimization solver. For this thesis, we implement

three different global optimization solvers.

3.4.3 MultiStart.

The first global optimization solver we use is MATLAB’s MultiStart tool [20].

MultiStart takes a local solver, in our case the lsqnonlin solver, and intializes it from

multiple different starting guesses. The aim of this global optimization solver is to sample

different basins of attraction. For a given local minimum, the basin of attraction is defined

to be the set of initial guesses that lead to the said minimum when optimizing using

lsqnonlin. MATLAB’s MultiStart performs the following steps: generate starting

points, run local solver, check stopping conditions and create GlobalOptimSolution object.

1. Generate Starting Points- With MATLAB’s MultiStart, users can define the bounds

for the starting points. From here, MATLAB randomly distributes a set of starting

points to use as initial guesses. MultiStart can be used in parallel by distributing the

starting points to different processors where the local solver is then executed.

2. Run Local Solver (lsqnonlin)- In this step, MATLAB runs lsqnonlin at the

given starting point. When the local solver finishes running, MultiStart stores the

solutions and moves to the next step. After each iteration, MATLAB checks to see if

the stopping conditions have been met.

3. Check Stopping Conditons- two stopping criteria for MultiStart.

• MaxTime- The maximum time, defined by the user, allotted for MultiStart to

run

• All starting points used
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4. Create GlobalOptimSolution object- When the stopping conditions are met,

MultiStart creates the GlobalOptimSolution object which contains:

• The solutions obtained by running lsqnonlin

• The function values at the solutions

• The points in the basin of attraction for each solution

More information on MultiStart can be found in MATLAB documentation

[18], [20], [22], [26].

3.4.4 GlobalSearch.

The next global optimization solver we implement is MATLAB’s GlobalSearch tool

[20]. GlobalSearch differs from MultiStart in that it is used to find a single global

minimum on a single processor where as MultiStart is used to find multiple local minima

and can run in parallel. GlobalSearch only runs fmincon, a local solver that finds the

minimum of a constrained function of several variables. Similar to lsqnonlin, fmincon

uses a trust region reflective algorithm to find the global minimum. The GlobalSearch

algorithm is summarized in the following steps:

1. Run local solver, fmincon, from initial starting point x0.

2. Generate a set of trial points.

3. Run local solver at the best starting point among a subset of trial points.

4. Loop through the remaining trial points, running fmincon if the point satisfies

constraint conditions as well as other specified conditions.

5. Create GlobalOptimSolutions vector.

A more detailed version of the GlobalSearch algorithm is listed below.
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1. Run fmincon from x0:

To use GlobalSearch, users must first input an objective function and a starting

point. GlobalSearch runs fmincon from the starting point. If this results in

convergence, the starting point and end point are used for an initial estimate on the

radius of a basin of attraction. GlobalSearch then records the function value for use

in a score function. In this case, the score function is the sum of the function value

at a certain point and a multiple of the sum of the constraint violations. Hence, a

feasible point has a score equal to its function value.

2. Generate Trial Points, Obtain Stage 1 Start Point, Run:

From here, GlobalSearch generates a set of trial points using a scatter search

algorithm. GlobalSearch then performs function evaluations at a subset of the trial

points, taking the point with the best score, called the Stage 1 Start Point, to run

fmincon on, the subset of trial points are then removed from the original set of trial

points.

3. Initialize Basins, Counters, Threshold:

The localSolverThreshold is initially the smaller of the two objective function

values of the solution to fmincon at x0 and the Stage 1 Start Point. The initial

estimate for the basins of attraction for the solution of these two points are spheres

centered at each point with the radius being the distance from the initial points to

the solution points. GlobalSearch keeps track of two counters.

• Number of consecutive trial points that lie within a basin of attraction. One for

each basin.

• Number of consecutive trial points that have a score function greater than

localSolverThreshold

4. Begin Main Loop:
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Global Search examines the remaining trial points, the Stage 2 Trial Points,

peforming the following steps. MaxTime is monitored, and stops the search if

MaxTime has elapsed.

5. Examine Stage 2 Trial Point to See if fmincon Runs:

GlobalSearch calls trial point p, and runs fmincon starting at p if the following

conditions hold:

• p is not in any existing basin

• the score of p is less than localSolverThreshold

• p satisfies bound and/or inequality constraints defined by user

6. When fmincon Runs:

• Reset counters for basins and threshold to zero

• Update the solution set. That is, if the fmincon run from p converges,

GlobalSearch updates the GlobalOptimSolution object

• Update basin radius and threshold. That is, if fmincon converges, we set

radius to the maximum of the distance between p and its solution and the

existing radius. We update the threshold to the score value of p

• Report to iterative display

7. When fmincon Does Not Run:

• Update counters. Increment the counter for every basin containing p. Reset the

counter of every other basin to zero. Also, increment the threshold counter if

the score of p is greater than or equal to localSolverThreshold. Otherwise reset

the counter to zero.

46



• React to Large Counter Values. For each basin with counter equal to

MaxWaitCycle, we shrink the basin radius and reset the counter to zero. If the

threshold counter equals MaxWaitCycle, we increase the threshold.

8. Report to Iterative Display. Every 200th trial points is displayed.

9. GlobalSearch has the same stopping criteria as MultiStart:

• MaxTime- The maximum time, defined by the user, allotted for MultiStart to

run

• All starting points used

After reaching one of the stopping criteria, GlobalSearch creates the

GlobalOptimSolution object which reports the solution and function value at the solution.

More information of GlobalSearch can be found in [20]

3.4.5 Genetic Algorithm.

The final global optimization solver we use is MATLAB’s Genetic Algorithm [21].

In general, a genetic algorithm is a method for solving both constrained and unconstrained

optimization problems based on a selection process that mimics biological evolution. The

algorithm iteratively modifies a population of individual solutions. In our case this

population is a set of vectors whose entries are the nine or thirteen parameters used for our

IED model. At each iteration, a genetic algorithm randomly selects individuals in the

current population, using them as parents to produce children for the next generation.

Over generations, the population evolves into an optimal solution.

Specifically, MATLAB’s Genetic Algorithm performs the following steps:

1. Begin by creating a random initial population
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2. The algorithm then creates a sequence of new populations. At each of these steps,

the algorithm uses points in the current population to create the next population. To

create the new population, Genetic Algorithms does the following:

• Scores each point in the current population using their function value

• Scales the scores to easily arrange members by order

• Selects members, now called parents, based on their function value scores

• Chooses a number of parents with lower function scores and labels them as

elite. These individuals are passed to the next generation since they have the

lowest function values

• Produces children from parents. This can be done by making random changes,

called mutation or by combining the vector entries of a pair of parents, called

crossover.

• Replaces population with children to form the next generation

3. The algorithm stops when one of the stopping criteria is met. There are numerous

different options for stopping conditions for Genetic Algorithm.

• Maximum Number of Generations Reached

• Maximum Time

• Fitness Limit - The algorithm stops when it attains a point with fitness value

lower than or equal to Fitness Limit

• Stall Generations/Function Tolerance - The algorithm stops when the weighted

average change in fitness function value divided by Stall generations is less

than Function Tolerance. Stall generations is defined by the consecutive

number of generations in which the optimal function value has not decreased
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• Stall Time Limit - The algorithm stops if there is no improvement during a

period of time equal to Stall Time Limit

At each vector coordinate, the Genetic Algorithm randomly selects one of the

parents’ corresponding coordinate value to pass on to the child for the crossover case. For

the mutation case, the algorithm creates mutation by randomly changing the coordinate

values of the parents. Elite parents are passed down without any change. More detailed

information on the Genetic Algorithm can be found in MATLAB documentation [19]

[21].
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IV. Results and Analysis

4.1 Solver Verification

To validate that our optimization methods work, we first use them on a test set of

data. Specifically, we fix a vector of our linear model parameters, σ0, and use equations

(3.8-3.11) to obtain data points. We then start our local and global optimization solvers

from a random point to see if we obtain the correct results. Doing this, we obtain the

following results with our linear model:

k1 k2 k3 k4 α0 α1 α2 β1 β2

400 2055 373 682 100 .4 .4 .6 .8

Table 4.1: σ0. We use this parameter vector to generate the test data points used for solver

verification.

Solver Function Value at Minimum

lsqnonlin 3.27e-4

MultiStart 9.04e-11

GlobalSearch 8.49e-2

Genetic Algorithm 7.32e-3

Table 4.2: Linear Verification Results. Running our four minimization solvers, we obtain

these function values.
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The optimization solvers for this case returns σ0. Similarly, with our nonlinear model, we

obtain the following results:

Solver Function Value at Minimum

lsqnonlin 1.36e-2

MultiStart 1.33e-2

GlobalSearch 1.41e-2

Genetic Algorithm 1.34e-2

Table 4.3: Nonlinear Verification Results. Running our four minimization solvers, we

obtain these function values.

The solution (MultiStart) in this case is:

C(0) E(0) D(0) F(0) C∗ α0 α1 α2 β1 β2 γ1 γ2 γ3

500 500 100 100 2.6e6 100 .4 .4 .6 .5 7.9e-10 7.7e-7 1.8e-6

Table 4.4: Nonlinear Verification Solution

Solving for k1, k2, k3, k4 from C(0), E(0), D(0), F(0) using equations (3.12-3.15), we also

see that the solvers return the parameter values in σ0. Thus, we see that our solvers

converge to σ0.

4.2 IED Data from Iraq

We can now apply all the methods previously mentioned in order to analyze IED

supply chain behavior. An IED metrics report written by the Center for Strategic

International Studies [2] contained the data displayed in Table 4.5 regarding the number of
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IEDs that were detonated and found in Iraq over a 26 month period from April 2008 to

May 2010. The information in Table 4.5 is also displayed in a plot in Figure 4.1. We use

the following information as data for our least squares problem from here on.

Time (months) Detonated (di) Found ( fi) Time(months) Detonated (di) Found ( fi)

0 93 710 13 434 4634

1 144 1244 14 460 4783

2 191 1615 15 469 4870

3 227 1958 16 480 4992

4 252 2293 17 491 5108

5 274 2617 18 503 5218

6 296 2905 19 510 5306

7 325 3218 20 519 5375

8 346 3485 21 529 5464

9 368 3744 22 541 5532

10 386 3977 23 554 5616

11 393 4206 24 565 5689

12 413 4437 25 580 5749

Table 4.5: IEDs Detonated and Found in Iraq
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Figure 4.1: Plot of IEDs Detonated and Found

4.3 Linear Model Results

Formulating the least squares problem for our linear case, we obtain the following

objective function:

m(σ)=
√∑25

i=0[(D(t = i, σ) − di)
2

+ (F(t = i, σ) − fi)
2]

(4.1)

where σ=< k1, k2, k3, k4, α0, α1, α2, β1, β2 > is a vector consisting of our nine parameters

and where

D(t) =

(
α2α0α1

r1r2

)
t +

α2α1k1e−r1t

r1 (r1 − r2)
−
α2k2e−r2t

r2
+ k3

F(t) =

[
β1α0

r1
+

(
β2α0α1

r1r2

)]
t −

β1k1e−r1t

r1
+
β2α1k1e−r1t

r1 (r1 − r2)
−
β2k2e−r2t

r2
+ k4

Introducing the data listed in Table 4.5 for di and fi for i = 0, 1, 2, ..., 25 into equation

4.1, we have our complete objective function.
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4.3.1 Local Optimization Solutions.

To implement our local solver, we must first determine the parameter values to use as

an initial guess. Suppose we make the initial guess of the rate parameters and initial

values of each state listed in Table 4.6. Then, from equations (3.12-3.15), we obtain a

parameter vector, σ, as our initial guess to run lsqnonlin.

Parameter C(0) E(0) D(0) F(0) α0 α1 α2 β1 β2

Guess Value 2450 1680 93 710 150 .8 .1 .2 .65

Table 4.6: Initial Guess Values for Linear Model

Using the local solver lsqnonlin we obtain the following function value as our

minimum: m(σ)=932.0660. Our initial guess parameters, bounds and solutions are listed

in the table below:

Parameter Lower Bound Upper Bound Initial Guess Solution

k1 −∞ ∞ 2300 3019.7

k2 −∞ ∞ 9360 1902421.4

k3 −∞ ∞ -467 257.0

k4 −∞ ∞ -3420 2577.3

α0 0 ∞ 150 152.3

α1 0 .99 .8 .579

α2 0 .99 .1 .063

β1 0 .99 .2 .063

β2 0 .99 .65 .578

Table 4.7: Parameter Values for Linear lsqnonlin Solution
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Figure 4.2 gives us the fit to our data obtained from our solution. We aim to obtain

better solutions through our global optimization methods.

(a) IEDs Detonated Fit (b) IEDs Found Fit

Figure 4.2: Data Fits for Linear Model Using Local Solver. This data fit obtains a function

value of m(σ)=932.0660. We aim to improve our results using global optimization tools.

4.3.2 Global Optimization Solutions.

4.3.2.1 MultiStart.

We now apply our global optimization methods in order to find a better solution.

Running the MultiStart global optimization solver, we were able to run lsqnonlin from

4,505 different starting points for our least squares problem. With this optimization tool,

we obtain a minimum of m(σ)=175.2102. The table below shows the bounds of our

random starting points as well as the parameter values of our solution.
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Parameter Lower Bound Upper Bound Initial Guess Solution

k1 −∞ ∞ 2300 3544.5

k2 −∞ ∞ 9360 96499.8

k3 −∞ ∞ -467 596.6

k4 −∞ ∞ -3420 6127.8

α0 0 ∞ 150 2.8e-11

α1 0 .99 .8 .110

α2 0 .99 .1 .013

β1 0 .99 .2 .034

β2 0 .99 .65 .127

Table 4.8: Parameter Values for Linear MultiStart Solution

4.3.2.2 GlobalSearch.

Running GlobalSearch, we obtain a minimum of m(σ)=177.1013.
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Parameter Lower Bound Upper Bound Initial Guess Solution

k1 −∞ ∞ 2300 4210.6

k2 −∞ ∞ 9360 -2191.5

k3 −∞ ∞ -467 466.4

k4 −∞ ∞ -3420 4608.8

α0 0 ∞ 150 55.37

α1 0 .99 .8 .084

α2 0 .99 .1 .048

β1 0 .99 .2 .074

β2 0 .99 .65 .275

Table 4.9: Parameter Values for Linear GlobalSearch Solution

4.3.2.3 Genetic Algorithm.

Finally, running Genetic Algorithm, we obtain a minimum of m(σ)=237.7092.

However, since GeneticAlgorithm is typically used to obtain a general idea of where the

minimum may exist, we run our local solver, lsqnonlin, starting at the Genetic

Algorithm output to obtain a better solution. Thus, performing lsqnonlin, we obtain a

minimum of m(σ)=175.2597 with the following values:
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Parameter Lower Bound Upper Bound Initial Guess Solution

k1 −∞ ∞ 2300 3795.9

k2 −∞ ∞ 9360 -39647.7

k3 −∞ ∞ -467 598.1

k4 −∞ ∞ -3420 6129.0

α0 0 ∞ 150 3.84e-14

α1 0 .99 .8 .100

α2 0 .99 .1 .015

β1 0 .99 .2 .037

β2 0 .99 .65 .132

Table 4.10: Parameter Values for Linear Genetic Algorithm Solution

4.3.3 Final Results.

We see that the MultiStart optimization tool gives us the best fit parameters for our

data. MultiStart obtains a function minimum of m(σ)=175.2102. The least squares

function value gives us the absolute error, the difference between our solution and the

exact data, however, if we wish to incorporate the magnitude of the exact solution, we

should report the relative error. We define the relative error as E =
m(σ)
||p||2

, where p is the

vector containing our 52 data points. That is, the relative error is the absolute error divided

by the magnitude of the exact solution. Thus, we have E = 0.008. The following plots

illustrate the progression of the four states through the 26 month period. Here, we see that

applying our least squares method, we can estimate how many IEDs were being

constructed and emplaced at a give time in the past.
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(a) IEDs Detonated Fit (b) IEDs Found Fit

Figure 4.3: Data Fits for Linear Model Using Global Solver. This plot illustrates the best fit

we obtain for our linear model. We achieve a relative error of E = 0.008. Furthermore, we

see that the data points for IEDs detonated seem to oscillate around the obtained fit. This

could be explained by a some periodic, time dependent occurence which may be accounted

for in the nonlinear model.
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(a) IEDs Constructed (b) IEDs Emplaced

Figure 4.4: Approximated Curves for Linear Model (MultiStart). To begin, we only had

access to data on IEDs found and detonated. After solving the least squares problem,

we now have an estimate for the numbers of IEDs being constructed and emplaced. In

this case, we gain valuable information on the behavior of the IED supply chain. We

observe that enemy forces are constructing fewer IEDs as time progresses. Furthermore,

at t ≈ 2, we observe that emplaced IEDs achieved a maximum. This means that at t ≈ 2,

coalition forces’ efforts in defeating the device began to overpower enemy forces’ efforts

at emplacing IEDs.

Without this estimation, coalition forces would have to use the number of IEDs

detonated and found as a metric to determine how well they are performing in attacking

the network and defeating the device. After solving our least squares problem, we have a

more direct metric for coalition forces to use. Since the number of IEDs in the

construction state is in a constant state of decrease, we can conclude that coalition forces

were adequately attacking the network for the duration of the 26 months. As for IEDs

emplaced, we can conclude that at time t ≈ 2, coalition forces were putting enough effort

into defeating the device to begin winning against enemy forces’ efforts at emplacing
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IEDs. Thus, we see that modeling the supply chain and solving our least squares

parameters offers a powerful tool at gauging coalition forces’ C-IED efforts.

4.4 Nonlinear Model Results

We can now apply all the methods previously mentioned in order to analyze IED

supply chain behavior for the nonlinear case. The least squares objective function for the

nonlinear case is the same as the one used for the linear case:

m(σ)=
√∑25

i=0[(D(t = i, σ) − di)
2

+ (F(t = i, σ) − fi)
2]

where in this case, σ=< C(0), E(0),D(0), F(0),C∗, α0, α1, α2, β1, β2, γ1, γ2, γ3 > is a

vector consisting of our thirteen parameters and where C(t), E(t), D(t), and F(t) are given

by the solutions obtained by running ODE45 on equations (3.16-3.20). We now perform

the parameter estimation methods on the nonlinear case.

4.4.1 Local Optimization Solutions.

We aim to use the nonlinear model to improve our results from the linear model. To

do, this we run lsqnonlin from an initial guess set to the minimum from the linear

model. Recall from our linear model that the parameter values that gives us our best

obtained minimum were:

Parameter k1 k2 k3 k4 α0 α1 α2 β1 β2

Value 3544.5 96499.8 596.6 6127.8 2.8e-11 .110 .013 .034 .127

Table 4.11: Linear Solution

Since we noted that our nonlinear model contains our linear model, we can take the

optimized parameter values from the linear model and use them as the initial guess point

for lsqnonlin. From equations (3.12-3.15), we see that we had the following initial

values for C(0), E(0), D(0), F(0).
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C(0) E(0) D(0) F(0)

3544.5 2293.6 115.0 771.3

Table 4.12: Initial Function Values for Nonlinear Model

Hence, converting our optimized parameter values from the linear case into

parameters for the nonlinear case we have the initial guess displayed in Table 4.13. We

assign a large value to C∗.

C(0) E(0) D(0) F(0) C∗ α0 α1 α2 β1 β2 γ1 γ2 γ3

3544.5 2293.6 115.0 771.3 500000 2.8e-11 .110 .013 .034 .127 0 0 0

Table 4.13: Initial Guess for Nonlinear Model

Using this initial guess, lsqnonlin stops after 7 iterations due to the fact that the norm of

the step size is less than TolX=1e-8. Our function value remains unchanged,

m(σ)=175.2102. In this case, the nonlinearity imposed by γ1, γ2, γ3, did not result in

improvement of our function value. We now investigate the nonlinear model using global

optimization methods.

4.4.2 Global Optimization Solutions.

4.4.2.1 MultiStart.

Running MultiStart, we obtain a minimum of m(σ)=174.8342 with the following

values:
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Parameter Lower Bound Upper Bound Initial Guess Solution

C(0) 0 10000 3544.5 4823.7

E(0) 0 10000 2293.6 1159.3

D(0) 0 300 115.0 129.5

F(0) 0 1000 771.3 774.7

C∗ 1 5000000 500000 18365

α0 0 1000 2.8e-11 .002

α1 0 .99 .110 3.265e-10

α2 0 .99 .013 .020

β1 0 .99 .034 .054

β2 0 .99 .127 .131

γ1 0 .1 0 2.357e-10

γ2 0 .1 0 4.399e-10

γ3 0 .1 0 3.482e-4

Table 4.14: Parameter Values for Nonlinear MultiStart Solution

4.4.2.2 GlobalSearch.

Running GlobalSearch, we obtain a minimum of m(σ)=175.2096 with the following

values:
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Parameter Lower Bound Upper Bound Initial Guess Solution

C(0) 0 10000 3544.5 3591.0

E(0) 0 10000 2293.6 2246.8

D(0) 0 300 115.0 115.1

F(0) 0 1000 771.3 771.3

C∗ 1 5000000 500000 499637

α0 0 1000 2.8e-11 0

α1 0 .99 .110 .108

α2 0 .99 .013 .014

β1 0 .99 .034 .034

β2 0 .99 .127 .128

γ1 0 .1 0 0

γ2 0 .1 0 0

γ3 0 .1 0 0

Table 4.15: Parameter Values for Nonlinear GlobalSearch Solution

4.4.2.3 Genetic Algorithm.

Running Genetic Algorithm and running lsqnonlin, we obtain m(σ)=175.2096

with the following values:
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Parameter Lower Bound Upper Bound Initial Guess Solution

C(0) 0 10000 3544.5 3591.8

E(0) 0 10000 2293.6 2246.1

D(0) 0 300 115.0 115.1

F(0) 0 1000 771.3 771.3

C∗ 1 5000000 500000 500000

α0 0 1000 2.8e-11 3.92e-14

α1 0 .99 .110 .108

α2 0 .99 .013 .014

β1 0 .99 .034 .034

β2 0 .99 .127 .128

γ1 0 .1 0 2.92e-14

γ2 0 .1 0 2.95e-14

γ3 0 .1 0 8.65e-10

Table 4.16: Parameter Values for Nonlinear Genetic Algorithm Solution

4.4.3 Final Results.

We see that MultiStart once again gives us the best fit. MultiStart obtains a function

minimum of m(σ)=174.8342. In terms of relative error, E=0.0079. The following plots

illustrate the four states through the 26 month period.
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(a) IEDs Detonated Fit (b) IEDs Found Fit

Figure 4.5: Data Fits for Nonlinear Model. This plot illustrates the best fit we obtain

for our nonlinear model. We achieve a relative error of E = 0.0079. We again see

the same oscillatory behavior for the IEDs detonated fit, thus, we can conclude that this

behavior is independent the strategy changes we allow for in our model. This behavior must

be explained by another source of time dependent oscillatory behavior, such as seasonal

weather effects.
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(a) IEDs Constructed (b) IEDs Emplaced

Figure 4.6: Approximated Curves for Nonlinear Model. With the new nonlinear model

estimates, the approximated curves demonstrate the same behavior, however, we now have

different vales for C(0) and E(0). We also see that the maximum for E(t) occurs at t ≈ 5.

4.5 Analysis

We used the nonlinear model to see if we can improve the minimum of our function

from the linear model. By applying both local and global optimization methods, we saw

that the improvements were marginal. We observed that although the nonlinear model did

not significantly improve our function value from the least squares problem, the

approximations for C(t) and E(t) that resulted were drastically different as pictured below.
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Figure 4.7: Estimate Comparison. Here we compare the two estimates for C and E that

we obtain. The initial values, C(0) and E(0), changed drastically. The maximum of E(t)

also occured later in time for the nonlinear model, however, the general behavior of the two

states were still similar. Both models gave us approximations where C(t) was decreasing,

while E(t) achieved some maximum and then began decreasing, presumably when coalition

forces’ C-IED operations began to outweigh enemy forces’ actions.

In this case, the two solutions present two unique minima for the objective function.

As a result, these two minima provide different approximations for C(t) and E(t). Thus,

although we obtained close fits to the observed data, the estimates for the unobserved

behavior changed drastically. From this point, we must choose which solution to use for

approximating the IED supply chain.

Looking at the best solution (MultiStart) from the nonlinear case, we see that the

terms that impose the nonlinearity, γi, were close to zero, with the exception of

γ3 = 3.482e − 4. Moreover, we see that the critical capacity term we introduce, C∗ does

not impose nonlinearity; it is a linear term. Since the γi terms are close to zero, we may be

inclined to conclude that the linear model may be sufficient in modeling the data we used.

To investigate this, we now perform the least squares problem with the same data on the
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linear model with the same critical capacity term. This gives us the following linear

system:

Ċ =

(
1 −

C
C∗

)
α0 − (α1 + β1)C

Ė = α1C − (α2 + β2)E

Ḋ = α2E

Ḟ = β1C + β2E

Solving the least squares problem, we obtain m(σ)=175.2096. Recall that the best

solution from the linear case was m(σ)=175.2102 and the best solution to the nonlinear

case was m(σ)=174.8342. Thus, since we applied a least squares problem to the linear

case including a capacity turn and still did not achieve as low of a minimum as the

nonlinear case, we see that the nonlinearity imposed by γ3 in our nonlinear solution was

the cause for the more optimal minimum. Since the nonlinear terms did in fact provide

better results and since the nonlinear model includes the linear model, we see that the

nonlinear case here, does ultimately provide a better estimate.

We do note, however, that the linear model is more efficient in two ways. First, the

linear model requires minimization over nine dimensions, while the nonlinear model

requires minimization over thirteen dimensions. This causes our optimization methods to

take more time. Second, in the nonlinear case we must run our numerical differential

equations solver to obtain function values with given parameters at a given time. Since we

have explicit solutions from equations (3.8-3.11) for the linear model, MATLAB only

requires function evaluations to obtain function values. Thus, if efficiency were valued, we

should use the linear model, with a critical capacity term.

We saw that we created a second, more complicated model, the nonlinear model to

obtain better solutions to our data fits. The nonlinear model obtained marginally better fits
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for the observed data, but drastically different estimates for the unobservables. We saw the

nonlinearity terms caused the change in the estimates. We choose to use the nonlinear

estimates due to the fact that it did provide better data fits and due to the fact that it

contains the linear model (thus allowing for further improvement of our function value).

We also recognize though, that if our data does not behave similarly to the set used in this

chapter, that is, if the number of IEDs detonated and found each time period are

fluctuating, the nonlinear model may provide significantly more optimal solutions than the

linear model as this would model enemy and coalition forces changing strategies.

One advantage of the nonlinear model is that it allows us to vary the rates over time.

Hence, after solving the least squares problem for our nonlinear model, we can see how

the rates in which IEDs flow from one state to other vary over time. We obtain the

following rate functions using the parameter values that gave us the best function value:
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Figure 4.8: Rates over Time. Here, we observe the behavior of our flow rates over time. We

see that the parameters remain nearly constant except for α̃1. This is expected as γ1 and γ2

were small compared to γ3, which α̃1 was influenced by. The initial increase in α̃1 accounts

for the difference between the linear and nonlinear model in the approximations for E(t).

The initial increase in α̃1 causes the maximum for E(t) to occur later in time. Here, we see

that the fluctuation in α̃1 is what allows us to obtain a better fit as the other rates remain

constant.
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V. Conclusions

5.1 Summary

To help combat IEDs, this thesis analyzed the IED supply chain process to provide

new perspective on fighting IEDs. To accomplish this, we began by first developing a

model of the supply chain terrorists use to develop, emplace and detonate IEDs. Our

model contained four different states in which IEDs can exist in and five rate parameters

which represented the flow of IEDs into and out of these states. For the flow rates, we

considered two cases. The first case assumed that the flow rates were constant while the

second case formulated flow rates which changed to represent basic strategies for both

enemy and coalition forces.

In the case of constant flow rates we can obtain solutions explicitly. In the second

case, we do not solve explicitly. Instead, we employed the use of a numerical differential

equations solver. Along the way, we proved that solutions to our system of differential

equations are unique. Furthermore, we created a way to show that MATLAB’s ODE45 is

convergent. To do this, we implemented our own RK4 scheme, observed convergence and

then showed that our RK4 results converged to the ODE45 solutions.

From here, we applied a least squares method. Over a given period of time, coalition

forces collect data on the number of IEDs that detonate as well as the number of IEDs

they find. Using this data, we formulated a least squares problem. In the case of constant

flow rates, we have a nine dimensional minimization problem while in the nonlinear case

we have a thirteen dimensional minimization problem.

To solve our least squares problem, we then employed the use of optimization tools.

We applied both local solvers (lsqnonlin) and global solvers (MultiStart GlobalSearch

Genetic Algorithm). This then gave us optimal parameter sets for both cases. We observed

that our nonlinear case contained our linear case, hence we applied the nonlinear case to
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improve our results from the linear case. Consequently, we observed that the

improvements were marginal but the resulting estimates were quite different. We chose to

use the nonlinear estimates as the nonlinear terms ultimately provided a better fit for the

data. We do note that if the rate at which D(t) and F(t) increases fluctuates, the nonlinear

model may provide substantial improvements as it allows for our rates to fluctuate.

Once the solution is obtained, we gain access to valuable information of the IED

supply chain. To begin, coalition forces could only observe the number of IEDs detonated

and found. After solving our least squares problem, not only do we know how many IEDs

were detonated or found but we also can estimate the number of IEDs constructed and

emplaced, as well as how fast they are being transported throughout the supply chain, this

gives us an estimate on the behavior of the entire supply chain. In the data used from Iraq

over a 26 month period, we estimated that IED construction was in decline the whole

time. We also saw that our estimation showed an increase in emplaced IEDs followed by a

decrease for the remainder of the time period. This allowed us to see when coalition

efforts at defeating the device finally became adequate enough in order to begin winning

the war against IEDs.

5.2 Future Work

In our model we did not consider a storage state for IEDs nor did we consider the fact

that coalition forces can find IEDs in storage. Instead we chose to combine storage with

the construction state so that our found flow rates would adhere to JEIDDO’s areas of

focus. For future work, one can model the IED supply chain to accommodate for storage.

One model for this supply chain is depicted in Figure 5.1. Furthermore, the research in

this thesis only focused on IEDs as a whole and only used data from Iraq over a 26 month

period. Future work can focus on creating different supply chains for different types of

IEDs. Researchers can also decide to perform the same analysis of IED supply chains and

focus on different countries, regions or battlefields.
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Figure 5.1: IED Supply Chain with Storage

By solving the least squares problem, we were able to look back and study the

progression of the construction, emplaced, detonated and found states. In the future, one

could use this information to look back and judge the impact of specific coalition C-IED

operations. By doing this, we can compare different C-IED operations and determine

which operations helped lower the number of IEDs emplaced and in construction and

which operations did not. This could provide valuable information on which C-IED

operations to fund in the future in the face budget constraints.

In this thesis, we only analyzed one data set. In the future, one could analyze more

data sets better modeled with the nonlinear case. One example could be a data set where

Ḋ(t) or Ḟ(t) fluctuate. We see that this could account for changing coalition and enemy

strategies. Furthemore, one could incorporate a system of delayed differential equations

into our model to account for the time needed for a change in strategy to take effect.

In the fits for IEDs detonated, we saw that the data points oscillated around our fits.

To extend the IED model, one could incorporate oscillatory behavior into the model. The
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introduction of a oscillating, time dependent behavior, such as seasonal weather effects,

can lead us to even better fits and approximations for IED supply chain behavior.

Lastly, one could use the methods provided in this thesis and apply them to combat

other threats. For example, drug trafficking supply chains. IED and drug trafficking supply

chains have much in common. Traffickers move along drugs throughout the supply chain

in a similar manner to enemy forces with IEDs. Furthermore, law enforcement agencies

look to intercept drugs in a similar manner to coalition forces with IEDs. The use of

parameter estimation methods in this thesis can help law enforcement agencies battle drug

trafficking threats.
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